# Development of High Performance Hybrid Fuels

NASA

Completed Technology Project (2011 - 2015)

## **Project Introduction**

NASA's strategic goals call for innovation in space technology for our nation's explorative future. Early phase paraffin fuel technology could enable practical hybrid motor use by producing high regression rates. Further, the creation of a robust and novel fuel, that overcomes paraffin mechanical property drawbacks, would produce high payoffs. The proposed research specifically will investigate polymer addition to paraffin grains, study the particle entrainment theory, evaluate hydride and metal additives, and demonstrate hypergolic ignition. We hope to find that polymers strengthen the low mechanical properties of paraffin. We will design, build, and demonstrate an experiment in which particle entrainment can be seen and understood. We will evaluate additives to increase performance and facilitate reliable and hypergolic ignition. Outreach to student run clubs and undergraduate engineers will also play an integral role demonstrating the promise of paraffin propellants through sounding rockets. A high performance paraffin based grain is a game-changing technology that could lead to the economical use of hybrid rockets.

#### **Anticipated Benefits**

A high performance paraffin based grain is a game-changing technology that could lead to the economical use of hybrid rockets.

## **Primary U.S. Work Locations and Key Partners**





Project Image Development of High Performance Hybrid Fuels

## **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Anticipated Benefits          | 1 |
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Organizational Responsibility | 1 |
| Images                        | 2 |
| Project Website:              | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 2 |
|                               |   |

# Organizational Responsibility

#### Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Responsible Program:**

Space Technology Research Grants



# Development of High Performance Hybrid Fuels



Completed Technology Project (2011 - 2015)

| Organizations<br>Performing Work  | Role                       | Туре     | Location                      |
|-----------------------------------|----------------------------|----------|-------------------------------|
| Purdue University-<br>Main Campus | Supporting<br>Organization | Academia | West<br>Lafayette,<br>Indiana |

## **Primary U.S. Work Locations**

Indiana

## **Images**



**4309-1363178639353.jpg**Project Image Development of High
Performance Hybrid Fuels
(https://techport.nasa.gov/imag
e/1750)

## **Project Website:**

https://www.nasa.gov/directorates/spacetech/home/index.html

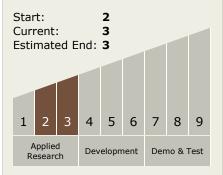
## **Project Management**

#### **Program Director:**

Claudia M Meyer

#### **Program Manager:**

Hung D Nguyen


#### **Principal Investigator:**

Steven Son

### **Co-Investigators:**

Christopher R Zaseck Chris Zaseck

# Technology Maturity (TRL)



# **Technology Areas**

#### **Primary:**

